The compound you provided, **1-[4-(2,3-dimethylphenyl)-1-piperazinyl]-3-(4,4,6-trimethyl-2-sulfanylidene-1,3-diazinan-1-yl)-1-propanone**, is a complex organic molecule with a very specific structure. Its importance likely lies in its potential biological activity and relevance to research in fields such as:
* **Pharmacology and Drug Discovery:** The molecule's structure suggests it could be a potential drug candidate. The piperazine and diazinane rings are commonly found in pharmaceuticals, and the presence of a sulfur atom in the diazinane ring may contribute to its biological activity. Researchers may be interested in exploring its potential as an agonist or antagonist for specific receptors or enzymes, or its ability to modulate cellular processes.
* **Chemical Biology and Medicinal Chemistry:** The compound's unique structure makes it an interesting target for further study. Researchers may be interested in understanding its synthesis, chemical properties, and interactions with biological targets. This information could be valuable for designing new drug candidates or for developing new methods for synthesizing similar molecules.
* **Materials Science:** The molecule's structure and potential functional groups could have applications in material science. For example, the sulfur atom could be used to create a material with specific properties, like electrical conductivity or reactivity.
**Without additional information about the specific research context, it's impossible to determine the precise reason for the molecule's importance.** It's crucial to consult the original research paper or study where this compound was first described to understand the specific context and rationale for its research.
**Please provide more information about the research context or the source where you found this molecule, and I can provide a more specific answer.**
ID Source | ID |
---|---|
PubMed CID | 5063380 |
CHEMBL ID | 1609273 |
CHEBI ID | 107411 |
Synonym |
---|
EU-0054304 |
MLS000729552 |
1-{3-[4-(2,3-dimethylphenyl)piperazin-1-yl]-3-oxopropyl}-4,4,6-trimethyltetrahydropyrimidine-2(1h)-thione |
smr000307829 |
CHEBI:107411 |
1-[4-(2,3-dimethylphenyl)piperazin-1-yl]-3-(4,4,6-trimethyl-2-sulfanylidene-1,3-diazinan-1-yl)propan-1-one |
AKOS001769096 |
HMS2740C14 |
AKOS022020927 |
CHEMBL1609273 |
1-[4-(2,3-dimethylphenyl)-1-piperazinyl]-3-(4,4,6-trimethyl-2-sulfanylidene-1,3-diazinan-1-yl)-1-propanone |
Q27185722 |
SR-01000545150-1 |
sr-01000545150 |
Class | Description |
---|---|
piperazines | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 35.4813 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 63.0957 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 18.3489 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 19.9526 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 70.7946 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 89.1251 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 13.4270 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 25.1189 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
DNA dC->dU-editing enzyme APOBEC-3F isoform a | Homo sapiens (human) | Potency | 22.3872 | 0.0259 | 11.2398 | 31.6228 | AID602313 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |